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(Received 21 February 1983 and in revised form 31 August 1983) 

In this paper we present a linear stability analysis for an unbounded, vertically 
stratified fluid which has compensating horizontal temperature and salinity gradients, 
so there is no horizontal density gradient. We obtain the most unstable perturbation 
for given linear horizontal and vertical gradients and calculate the growth rates, the 
vertical lengthscale of the intrusion and the slope of the intrusion to the horizontal. 
We show that the system is most unstable to two-dimensional disturbances and that, 
except for a small region in which the temperature stratification is unstable and the 
salinity stratification is stable, the most-unstable disturbance is non-oscillatory. We 
also obtain a solution to the fully nonlinear equations and calculate the fluxes of heat 
and salt. The nonlinear solution shows that alternating interfaces of salt-finger and 
diffusive interfaces will eventually appear on the intrusion when the vertical 
stratifications are both stable. 

1. Introduction 
It is now recognized that there are several mechanisms that can lead to the 

formation of layers in the temperature and salinity fields in the ocean. In this paper 
we investigate how layers may be set up owing to the presence of horizontal gradients, 
in order to gain a better understanding of the interleaving that can occur at  oceanic 
fronts. Layers that probably owe their existence to the presence of horizontal 
gradients have been seen in the observations of Stommel & Fedorov (1967), Horne 
(1978) and Gregg (1975, 1979) amongst others. It is observed that in these regions 
the temperature and salinity gradients are compensating and the density surfaces are 
almost horizontal. 

Laboratory experiments of Thorpe, Hutt & Soulsby (1969), Wirtz, Briggs & Chen 
(1972) and Ruddick & Turner (1979) demonstrate that stratified fluids with horizontal 
gradients of temperature and salinity are unstable to horizontal interleaving. 
Previous theoretical work (Stern 1967; Toole & Georgi 1981) assumes that it is 
necessary to have salt fingers in order to obtain the interleaving instability. Toole & 
Georgi assume that the fluxes of heat and salt in the vertical are dominated by 
transports due to the presence of salt fingers. They model the fluxes by using uniform 
eddy diffusivities and by taking the ratio of the fluxes of heat and salt to be equal 
to a constant, y.  In this paper we start from the state of rest and show that purely 
molecular processes will lead to the growth of the interleaving instability. The 
instability is shown to grow until the vertical gradients of temperature and salinity 
caused by the interleaving are large enough to set up diffusive and salt-finger 
interfaces on the intrusions. This paper presents a study of the process by which the 
interleaving appears. The earlier work has examined, in a heuristic manner, the later 
stages of development of the instability when the interleaving has itself become 
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unstable and has acquired salt-finger and diffusive interfaces. The results of Toole 
& Georgi can be obtained from this paper, for the non-rotating case, by replacing 
the molecular diffusivities used here with the eddy diffusivities that they use. 

The model presented here allows for linear horizontal and vertical gradients of 
temperature and salinity. We consider flow in an unbounded fluid, since for oceanic 
problems the boundaries are usually a long way away, compared with the scale of 
the intrusion. The scales are then determined by the fluid properties, just as they are 
for salt fingers in an unbounded fluid (Walin 1964). In $2 we present the linear 
stability analysis for an unbounded region of incompressible fluid and obtain the 
characteristic equation for the growth of periodic perturbations. In $3 we find the 
solutions of this equation which have maximum growth rates for given temperature 
and salinity gradients. We obtain the lengthscale of intrusions and their slope to the 
horizontal corresponding to the maximum growth rates. In  $4 we find the flux ratio 
corresponding to the maximum growth rate. In  $ 5  we obtain a solution to the fully 
nonlinear equations. This solution shows that if both vertical stratifications are 
initially stable then the instability will grow and when it is large enough salt-finger 
and diffusive interfaces will appear on the intrusion. These interfaces are maintained 
by the instability and they can be seen in the experiments of Ruddick & Turner (1979). 

2. Linear stability analysis 
Suppose we have an unbounded region of incompressible fluid, which contains both 

temperature and salinity variations. We suppose that there is no horizontal variation 
in the density field, so that the temperature and salinity fields compensate each other 
horizontally. The vertical temperature and salinity gradients may be stable or 
unstable. The situation that is particularly interesting is when both the temperature 
and salinity gradients are vertically stable, so that the temperature increases with 
height and the salinity decreases with height. Even in this apparently stable situation 
the horizontal temperature and salinity gradients drive an instability. This instability 
leads to the interleaving that is seen in the laboratory experiments of Ruddick & 
Turner (1979) and it is likely that it is sometimes responsible for finestructure layering 
in the ocean (see Fedorov 1978). 

The coordinates are chosen with z measuring distance vertically upwards and z 
horizontal. We show in the appendix that there is a Squires transformation for this 
system and use it to show that the system has the largest growth rates for 
two-dimensional perturbations. We therefore consider only two-dimensional per- 
turbations. We suppose that the temperature and salinity fields have linear horizon- 
tal and vertical gradients, so that the undisturbed temperature and salinity fields 
are given by 

T,+ x+ q z, so + x, x + s ,  z. (2.1) 

We suppose that the density field is given by 

p = po(1 -aT+PS), 

where T and S are the temperature and salinity, and a and are the coefficients of 
expansion for heat and salt, defined so that a and P are both positive. We require 
that there is no horizontal variation of the undisturbed density field, so 

aT, = /AT=. (2.3) 
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We shall always assume gx > 0, i.e. the x-direction is in the direction of increasing 
salinity. The stream function $ is defined by 

where u is the horizontal velocity and w is the vertical velocity. The perturbations 
to the temperature, salinity and pressure fields are T,  S and p .  The linearized 
equations for vorticity, temperature, salinity and pressure are then 

a a 
%V'$ = & (g(aT-P@) + vv4*', ( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

These equations are easily manipulated to obtain an equation for $: 

This is a linear equation with constant coefficients and so the solution will be a 
superposition of solutions of the form 

%+ = Re($,exp(i(kx+mz)+At)), 12.7) 

where is a complex constant, k and m are the horizontal and vertical wavenumbers, 
the real part of A is the growth rate and the imaginary part of A is the frequency. 
Substituting this solution into (2.6) yields the characteristic equation 

( A  + vp') ( A  + K T ~ ' )  ( A  + ~ ~ p ~ ) p '  + hgk'(a2 -PgZ) 

where ,u = (k*+m2)i is the absolute wavenumber. The solution (2.7) is then unstable 
if Re (A) > 0. Neutral stability occurs if A = 0 or if A = 0 or if h is pure imaginary 
(so A = io). 

(i) If A = 0, substituting into (2.8) gives 

If gx =+ 0 there is always a solution to this when 

m 
k 

- 
~ A S J K T - K ~ ) -  < KSKT (2.10) 

12-2 
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Hot salty 

Cold fresh 

FIQURE 1. Schematic illustration of slope of wavefronts for the direct mode of instability, 
when the vertical gradients are stable. 

There are always values of mlk for which this condition holds and hence, by choosing 
p smaller than the value given by (2.9), the system will always be unstable. If a c  > 0 
and /3gz < 0, so that both components are vertically stable, then (2.10) gives mlk < 0 
(since gx > 0 and K ,  > K ~ ) .  This means that the wavefronts tilt as shown in figure 
1,  with the result that hot salty fluid lies above cold fresh fluid between any wave- 
fronts. This situation is analogous to the salt-finger regime when there are vertical 
gradients. There is experimental evidence that wavefronts do slope in this direction 
(Thorpe et al. 1969). If Rx = 0 there is only a solution to (2.9) when / 3 s Z / K s  > a q / K , .  
If a z  < /3&, so that the system would be unstable in the absence of any dissipation, 
then, since K~ < K ~ ,  there is always a direct instability. If u z  > /3gz then there is only 
aninstabilityif/3sz/Ks > a z / K T .  Thisis theconditionfortheexistenceofsalt-fingering 
in an unbounded region (Walin 1964). As gx increases from zero, the interleaving 
instability immediately starts to grow. 

(ii) If h = iw, with w real, there is a transition to an oscillatory instability. 
Substituting into (2.8) and equating real and imaginary parts gives 

(a? -/3gz) f  KT + VKS + KS K T )  p4 
k2 

w2 = s 
P2 

In order for (2.11) to have a solution, it is necessary that p2 > 0, with w real. This 
requirement gives two conditions. First p2 > 0 requires that 

(2.12) 
m 

/~BJK, - K ~ )  

and secondly w2 > 0 requires that 

> aT,( v + K T )  -/3Rz(v + K S ) ,  

m /3i%z(~T-~S) ( V K ,  + V K ~ +  K~ K,)  - > ( v +  K ~ )  ~ % / 3 & -  (v+ K T )  &ac. (2.13) 

If aq-/3flz > 0, so that the vertical stratification is statically stable, then condition 
(2.12) implies that condition (2.13) is also true. If aq-/3gz < 0 then condition (2.13) 
implies condition (2.12). The values of m/k can always be chosen so that there is an 
oscillatory instability. In the case where a z  > 0 and /3Rz < 0, then (2.12) gives 
mlk > 0, so the wavefronts tilt in the opposite direction to their tilt in the stationary 

k 
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instability. If gx = 0, then, using (2.12) and (2.13), there can only be oscillatory 
instability when a q  < 0 and pgz < 0, so the temperature gradient is unstable and 
the salinity gradient stable. I n  this case the oscillatory instability can only occur when 

Y + K ~  aT ( v + K ~ ) K &  

V + K T  ps, ( v + K T ) K $ '  
<-< (2.14) 

For short waves, i.e. p+ a, the values of h obtained from (2.8) are -v,u2, - K T ~ ~  

and - K ~ , L L ~ .  Hence short waves always decay. For long waves, i.e. , L + O ,  the diffusion 
ceases to be important and (2.8) has the solution 

(2.15) 

If a z  > pBz then h is pure imaginary and equal to the buoyancy frequency of the 
fluid, so long waves propagate through the fluid like internal waves in a non-dissipative 
fluid. If ac < PL!?, then the fluid is top-heavy and (2.15) gives the initial growth rate 
for the overturning of the fluid. This growth will be maximum if m = 0 ,  so the fluid 
moves directly downwards. This is the standard convective instability, which always 
occurs on the largest available lengthscale. This instability only depends on the fluid 
being top-heavy. It exists in the absence of diffusion. The double-diffusive instability, 
that  leads to interleaving, occurs for uT, > psZ, i.e. when the fluid is bottom-heavy. 

3. The most-unstable mode for given gradients 
We have seen in $2 that in the presence of horizontal temperature and salinity 

gradients the fluid is unstable for any vertical distribution of temperature and 
salinity. In this section we find the maximum growth rates of this instability and 
the wavenumbers and wavefront slopes associated with the maximum growth rates. 

If the growth rate Re@) is maximum then, if h is real so the instability is 
non-oscillatory, the maximum growth occurs when 

Hence for non-oscillatory modes the maximum growth is obtained by differentiating 
the characteristic equation (2.8). This leads to two equations, which should be solved 
with (2.8) to find the values of A, k and m for maximum growth: 

For the oscillatory modes when h = hr + iw with w non-zero, the maximum growth 
occurs when 

(3.4) 



We now non-dimensionalize the equations for maximum growth. We define 

where H is a horizontal Rayleigh number, RT is a thermal Rayleigh number and R, 
is a saline Rayleigh number. We also define 

V KS 

K T  K T  
r=- , 7 = - ,  (3.10) 

where cr is the Prandtl number and 7 the ratio of the saline diffusivity to the thermal 
diffuaivity . 

Then for the non-oscillatory modes we obtain, by rearranging (2 .8) ,  (3.2) and (3.3), 
the following three equations for maximum growth : 

(3.11 a) 

For the oscillatory mode with maximum growth we obtain 

(3.12a) 
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v =  8q:+8q;(a+7+1)+2qr[(a+7+ 1 ) 2 + ( m + a + 7 ) ] + ( a 7 + ~ ~ + 7 )  (a+7+1)-a7, 
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where 

W=--q :+qr [ (a+7+1) '+ (a7+a+7) ]+( (T7+a+7)  ( a + 7 + 1 ) - ~ 7 7 ,  

and qr is the real part of q. By (3.5) we also obtain 

To find the maximum growth for the non-oscillatory mode, (3.11) must be solved 
simultaneously for q, k and m, for given values of v, K T ,  K,, a z ,  /3& and /3gx. It is, 
however, easier to solve the equations by substituting given values of q and m/k, 
which then gives values for H ,  RT and R,, and hence gives the wavenumber for the 
maximum-growth-rate disturbance, since the Rayleigh numbers depend on the 
wavenumber. The equations for the oscillatory modes are solved in the same way. 

The results obtained from (3.11) and (3.12) can be displayed by using a graph of 
/3gx,laT, versus /3Sz/az. For each point on the graph there is a maximum growth 
rate, which is given by 

(3.14) 

There is a maximum growth rate for both the direct and the oscillatory mode. The 
largest growth rate may be due to either a direct mode or an oscillatory mode. Usually 
we find the growth rate is largest for the direct mode, a result which also applies when 
gx = 0 (Baines & Gill 1969). The oscillatory mode only has a larger growth rate when 
T,  is negative and ,f3Sz/az lies between 1 and (a  + l)/(a + 7), and for small values of 
/3JX.aT,. Whenever ?r, is positive, so that the temperature gradient is stable, the 
numerical results suggest that the non-oscillatory mode always has the largest growth 

2 - galT,l 4 4  h = ~ T y q -  - ( a 1 IRTI:' 

rate. 
For each value of /3gx/ag and PS21az there corresponds a value of RT,  which gives 

the wavenumber for the maximum growth rate, since 

(3.15) 

There is also a value of mlk, the slope of the wavefront to the vertical, for each value 
of /@../aq and /3gz/az. 

The results obtained from (3.1 1) are displayed in figure 2 for the case where a = 10 
and 7 = &, which corresponds approximately to the diffusivities for heat and salt, 
and for T, positive. It should be noted that values of ,f3gz/aq > 1 correspond to a 
gravitationally unstable basic state. We see that if g2 < 0 and T,  > 0 then as & tends 
to zero mlk tends to infinity, which means the interleaving wavefronts become more 
horizontal, and R ,  tends to infinity, so y tends to zero. 

We now look at some results we can find for any given values of a and 7.  

(i) For the direct mode, R ,  has a local minimum value, which occurs when m/k = 0.  
By (3.11) this minimum value of RT occurs when 

(3.16) 
(4(a + 7) a7 + a272)4  - a7 

2(U 4- 7 )  
q =  

The corresponding minimum value of R ,  is 

(3.17) 
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FIGURE 2(a ,  b ) .  For caption see facing page. 
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FIGURE 2. Plots of @Jaz versus &!?Jag for > 0 when D = 10 and 7 = 0.01. (a)  The contours 
of the maximum dimensionless growth rate q/lRTlt for the values &, &, i, i, $, 1 and 2. ( b )  The 
contours of m/k corresponding to maximum growth for the values -&, -i, - 1, -4, -16, -64 
and -256. (c) The contours of R, corresponding to maximum growth for the values 2, 4, 16, 64, 
256, 1024 and 4096. These contours give the wavelength, since RT = g a c / v K T p 4 .  

At this point PfiJaG = 0 and 

(3.18) 

"'hen (T = 10 and 7 = & this happens when 

q = 0.095, R, = 1.47 and Pfiz/ac = 0.168. 

The way that RT increases away from the minimum can be seen in figure 2(c). The 
qualitative behaviour will be the same for al? values of cr and 7 ,  with the minimum 
value of RT given by (3.17). 

(ii) For positive growth rates m/k = 0 if and only if Pfi./az = 0 for both direct 
and oscillatory modes. This implies that if there is no horizontal gradient the motion 
with the maximum growth rate is a function of horizontal position only and that the 
velocity is purely vertical, as it is in salt fingers. 

(iii) For the direct mode as q+O then /3gx/az+0, /3fiz/ac+7 and R,+ 00, so 
p + 0. This is marginal stability for salt-fingering. 

(iv) For the oscillatory mode as the real part of q tends to zero then /3ax/ag+0, 
/3&/aT,+(a+l)/(cr+7) a n d R T + - m , s o p + O a n d ~  < 0. Thisismarginalstability 
for the oscillatory mode. 
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RT+- 00. For the oscillatory mode Pflx/aq+ k/m, /?flz/aq+ 1 and RT+ co. 

modes. 

(v) If q+ oo and m/k 4 0 then for the direct mode @,/a%+ k/m7 /?Sz/az+ 1 and 

(vi) If q = A(k/m)" then, if a is positive, as m/k+O, q+ 03. On this line, for direct 

If a > 2 then RT+-oo, /3gx/aZ+oo and $&/az+l .  If a < 2 then R T + m  and 
/3&/az+(a+i)/(a+7). If 2 > a > 1 then /3gx/aq+-oo, and if 1 > a > 0 then 
/3SX/a~+O.  If a = 2 then R ,  can be positive or negative depending on whether A 
is smaller or larger than &(a + 7 ) .  Then 

psz 2 A - ( a + l )  
-= 
aT, 2 A - ( ~ + 7 ) '  

For oscillatory modes, when qr = A(k/m)", 

If a > 2 then R T + w ,  /3gz/a%+co and /3flz/aQ+1. Ifa < 2 then RT+-m and 
/3gz/az + (a + 27 + l ) / ( a  + 7 + 2 ) .  If a = 2 then R, is positive or negative depending 
on whether A is larger or smaller than i ( g + 7 + 2 ) .  The above results are useful in 
obtaining and checking numerical results when q - f  00 and m/k+O. 

(vii) If a z  = 0 then for the direct mode 

(3.19) 

(3.20) 

and R ,  = 0, which gives an equation for m/k in terms of q :  

(3.21) 
m2 
k 

(2q3 + q 2 ( a + 7 )  - q ( a  + 7 )  - 2 ~ )  5 = (q+ 1 )  (P(a + 7 )  + 2 ~ ~ 7 ) .  

(viii) If /3flz = 0 then for the direct mode 

m2 
(2q3+q(q-7)  (a+ 1)-2g7) lep  = (q+7)  ( q ( a + 1 ) + 2 a ) .  

(3.22) 

(3.23) 

(3.24) 
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4. Fluxes 
For a propagating mode 

$ = tfroe*rtcos(kz+mz+Ait), 

where we assume that ll.o is real. Then, by (2.5b), 

I, T = Re [To eArt ei(kZ+mZ+Ai t )  

where 
irnE - i k c  

T,= 9 0  2 (A, + tcTpL2) + iAi 

with 
im& - ikRZ so = $0. (A, + KS pu") + iAi 

The vertical convective heat flux averaged over a wavelength is given by 

where ( ) denotes an average over a wavelength, and the vertical salt flux will be 

Fs = (wS). (4.7) 

Substituting from (4.1), (4.3) and (4.5) gives 

(4.10) 

(4.11) 

When & = 0 (4.10) and (4.1) give flux ratios in direct agreement with those of 
Schmidt (1979). The minimum value for the flux ratio is about 0.56 for u = 10 and 
7 = 0.01, i.e. for heat and salt, and is about 0.83 when u = lo00 and 7 = +, i.e. for 
salt and sugar. For general u and 7 the minimum value for the flux ratio occurs when 

(4.12) 

We display the lines of constant flux ratio for the case where u = 10 and 7 = 0.01 
in figure 3. 

rYT 4- u(4V27 4T2 - 27(a+ 7) (a+ 1))i 
!I= 2a2-(fa+7) (a4-1) 
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The horizontal heat flux is obtained from the vertical heat flux by 

m 
FTH = - -FT, k 

and the horizontal salt flux 
171. 

FsH = - - Fs. k 

(4.13) 

(4.14) 

The ratio of the horizontal fluxes is the same as the ratio of the vertical fluxes. It 
is easily shown from (4.11) that the flux ratio is always less than one. Hence salt is 
always transported faster than heat by this process. 

The flux ratio given by (4.10) will be the appropriate value to use until salt fingers 
and diffusive interfaces appear. We show in 5 why these interfaces do appear. After 
that stage it will be necessary to change the fluxes in order to include the presence 
of the salt-fingering. 
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5. The nonlinear solution 
The full nonlinear governing equations are 

a a -v2$+ at J($,V2$) = z(g(aT-PS))+vV4+, 

aT a$- a$-  
at ax aZ 
as a $ -  a$-  
at ax az 

-+J(+,T)+-z--Tx= KTV2T, 

- +J($,S)+ -Sz- -Sx = K S V ~ S ,  

(5.1 a )  

(5.1 b )  

(5.1 c )  

where the Jacobian is defined by 

If the terms involving the Jacobian are removed from these equations then the 
linearized equations are obtained. Since all the Jacobian terms vanish identically for 
sinusoidal functions, any sinusoidal solution of the linearized equations will also 
satisfy the nonlinear equations. This is a property that also occurs for salt fingers 
(Huppert & Manins 1973; Holyer 1981). Therefore there is a solution to the nonlinear 
equations (5.1) of the form 

$ = $o eAt cos (kx + mz), 

T = T, eAt sin (kx + mz),  

( 5 . 2 ~ )  

(5.2b) 

S = SoeAtsin(kx+mz), ( 5 . 2 ~ )  

where $ o )  T, and So are constants and we now suppose h is real, so we have a 
non-oscillatory solution. Then (5.2) is a solution of (5.1) provided that 

k g - m c  
A+KT,LL~ 

To = $0 ( 5 . 3 ~ )  

and 
(5.3b) 

and h satisfies the cubic equation (2.8). 

making these assumptions. Then, in order that h is positive we have, from (2 .8) ,  
We shall suppose that gX, +o and k are positive. There is no generality lost by 

(5.4) 

The solution (5.2) satisfies the nonlinear equations for any values of k, m and h 
that satisfy (2 .8) .  If there is an initial disturbance in the fluid it will grow, via linear 
theory, with one particular wavelength growing fastest. The other modes which grow 
on the linear theory will be weaker than the fastest-growing mode. This solution can 
then carry on growing indefinitely until it ,  in turn, becomes unstable. This view of 
the growth from an initial disturbance is supported by the experiments of Ruddick 
& Turner (1979) and Thorpe et al. (1969), where periodic layers are seen, rather than 
many interacting modes. The growth-rate maximum is narrow enough that the 
variation in the thickness of the layers is small. 
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> 0 and S,  < 0, so both temperature and 
salinity are vertically stable. We also have K* > K ~ ,  so (5.4) implies that m < 0. Hence 
we see from (5.3) that aT, and /3So are both positive. The vertical temperature and 
salinity gradients given by the nonlinear solution, including the background 
stratifications, will be 

We now consider the case where 

T, = T,+mT,eAtcos(kx+mz), ( 5 . 5 4  

S, = S,+mSoe*tcos(kx+mz). (5.5b) 

Since > 0, & < 0, mT, < 0 and mS, < 0, when the temperature stratification 
decreases, the magnitude of the salinity stratification will increase and vice versa. For 
that part of the wave with cos (kx+mz) negative (5 .5)  shows that the temperature 
stratification increases and the magnitude of the salinity stratification decreases as 
time passes until S, > 0 and T, > 0. Under these conditions one expects salt fingers 
to grow, starting at  the level where cos (kx+mz) = - 1. For the part of the wave with 
cos (kx$mz) positive, (5.5) shows that the temperature stratification decreases and 
the salinity stratification increases until T, < 0 and S, < 0. In this region one will 
expect to see a diffusive interface. It is also easy to show from the velocity that warm 
salty intrusions sink. 

Hence, in one cycle of the solution, in which kx+ mz changes by 271, we expect there 
to be a diffusive interface and a salt-finger interface. This is seen to occur in the 
experiments of Ruddick & Turner (1979). The diffusive and salt-finger interfaces are 
not seen in the Thorpe et al. (1969) experiment, because the sidewalls of their tank 
prevent the interleaving from growing sufficiently. 

The model presented in this paper will work until the salt-finger and diffusive 
interfaces appear. After their appearance the additional fluxes due to the salt finger 
will become important, as discussed by Toole & Georgi (1981). The salt fingers will 
have a dominant effect on the fluxes, and salt will be transported more efficiently 
than heat. This will change the apparent roles of the heat and the salt, because heat 
is now transported more slowly than salt. One can see this effect by comparing the 
Ruddick & Turner experiment with the Thorp  et al. experiment. In the Ruddick & 
Turner experiment, where the horizontal gradient is initially very large near the 
barrier, the salt-finger interfaces appear as soon as the interleaving appears, and the 
interleaving slopes so that warm, salty intrusions rise and cold fresh ones sink. In 
the Thorpe et al. experiment, where the horizontal gradient is close to linear across 
the tank, salt fingers are not observed, and the interleaving slopes so that warm salty 
intrusions sink and cold fresh ones rise. Hence, if the salt fingers are providing the 
dominant effect on the fluxes, the interleaving will slope down towards the hot salty 
side of the front with warm salty intrusions rising and, if the interleaving has not 
grown sufficiently for salt fingers to be present, the interleaving will slope up toyards 
the hot salty side of the front with warm salty intrusions sinking. 

6. Conclusions 
In  this paper we have presented a stability analysis for an unbounded, vertically 

stratified fluid which has compensating horizontal temperature and salinity gradients. 
We have shown that this situation is unstable and have given equations (3.11) and 
(3.12), which can be used to calculate the growth rate of the instability, its slope and 
its wavelength. Figure 2 displays these results for the case where the fluid is stratified 
with heat and salt, so cr = 10 and 7 = 0.01. We have shown the direct mode nearly 
always has a larger growth rate than the oscillatory mode. A solution to the full 
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nonlinear problem is given. It shows that the interleaving will grow until salt-finger 
and diffusive interfaces appear in each wavelength. 

The equations (3.11) can be used to compare the theory with the experiment of 
Thorpe et al. (1969). For the experiment shown in figure 11 of their paper all the 
gradients are approximately linear and there is no vertical temperature, so a c  = 0. 
Then, using (3.19)-(3.21), which are simplifications of (3.11) that apply in this special 
case, we find that when /3gx/pgz = -0.07 then q = 0.87, m/k  = 44 and Rs = - 1800. 
This gives a wavelength, or layer depth, of approximately 2 cm, which is in good 
agreement with the measurement. The results obtained from (3.1 l ) ,  using molecular 
diffusivities, can strictly only be used in the early stages of interleaving, before 
salt-finger and diffusive interfaces appear. It is possible that, even in the ocean, 
interleaving could exist in this early stage. By observing the slope of the interleaving 
it may be possible to deduce whether or not salt fingers should be seen on the 
interfaces. One can obtain the order of magnitude of layer thicknesses that one 
expects to see in the ocean when salt fingers are present by inserting appropriate eddy 
diffusivities. This gives reasonable agreement with measurements of Schmitt & Georgi 
(1982), Fedorov (1978), Horne (1978) and Gregg (1979). 

This paper describes in detail the early stages of interleaving and shows why 
salt-finger and diffusive interfaces appear. It is hoped it will be possible to develop 
the model so that the salt-finger and diffusive interfaces are included, without 
resorting to the crude approximation of using eddy diffusivities. 

Appendix 
In the analysis, we have supposed that the motion is two-dimensional. We show here 

that a three-dimensional perturbation is equivalent to a two-dimensional pertur- 
bation with the wavenumber of the three-dimensional motion (k cos 8, k sin 8, m) 
replaced by (k ,O,m) and the horizontal salinity gradient S, replaced by S,cos8. 
Figure 2 shows that the maximum growth rate increases as the horizontal salinity 
gradient increases. Hence, when cr = 10 and 7 = 0.01 for any given values of q, gZ 
and &., the two-dimensional disturbance will have the largest growth rate, because 
a three-dimensional disturbance is equivalent to a two-dimensional one with a smaller 
horizontal salinity gradient. We believe the result is true for all values of and 7 ,  

but have been unable to prove the result in general. 
For a three-dimensional disturbance the linearized equations are 

V * u  = 0, (A 1)  

o = V A u ,  (A 2) 

a o  
at 
-- vV20 = V A (gL(aT-/3S)), 

where 2 is a unit vertical vector. We look for a solution proportional to exp {ik-x + At}, 
with k = (k cos 8, k sin 8, m),  so u = ( uo, vo, wo) exp {ik-x +At}. Then the independent 
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equations that can be obtained from (A 1)-(A 6) are 

k cos 0u, + k sin Ovo + mw, = 0, 

cos 0v, = sin Bu,, 

( A  + vp2) ( k  sin 0w, - muo) = g(aq - P8,) k sin 0,  

- - 
(A + KS ,U2) 80 = - 8, Wo - 8, UO, 

where p2 = k2 + m2. 
These equations then yield the characteristic equation 

(A+ vp2) ( A + K T ~ ' )  ( A + ~ S p ~ ) p ~ + A g k ~ ( a ~ - ~ & )  

This is the same as the characteristic equation (2.8) for two-dimensional perturbations, 
but with g, replaced by gx cos 0. 
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